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Abstract
The WKB approximation for deformed space with minimal length is
considered. The Bohr–Sommerfeld quantization rule is obtained. A
new interesting feature in the presence of deformation is that the WKB
approximation is valid for intermediate quantum numbers and can be invalid
for small as well as very large quantum numbers. The correctness of the rule is
verified by comparing obtained results with exact expressions for corresponding
spectra.

PACS numbers: 02.40.Gh, 03.65.Sq

1. Introduction

Quantum mechanics with modification of the usual canonical commutation relations has been
investigated intensively lately. Such works are motivated by several independent lines of
investigation in string theory and quantum gravity, which suggest the existence of a finite
lower bound to the possible resolution of length �X [1–3].

A lot of attention was paid to the following deformed commutation relation [4–7]:

[X,P ] = ih̄(1 + βP 2) (1)

and it was shown that it implies the existence of minimal resolution length �X =
√

〈(�X)2〉 �
h̄
√

β [4], i.e. there is no possibility of measuring coordinate X with an accuracy larger than
�X. If someone puts β = 0, the usual Heisenberg algebra can be obtained.

The use of the deformed commutation relations (1) brings new difficulties in solving
the quantum problems. As far as we know there are only a few problems for which spectra
have been found exactly. They are the one-dimensional oscillator [4], the D-dimensional
isotropic harmonic oscillator [8], the three-dimensional relativistic Dirac oscillator [9], and
1D Coulomb potential [10]. Note that in the one-dimensional case, the harmonic oscillator
problem has been solved exactly [11, 12] for more general deformation leading to nonzero
uncertainties in both position and momentum.

0305-4470/06/020379+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 379

http://dx.doi.org/10.1088/0305-4470/39/2/008
mailto:fityo@ktf.franko.lviv.ua
mailto:chair@ktf.franko.lviv.ua
mailto:tkachuk@ktf.franko.lviv.ua
http://stacks.iop.org/JPhysA/39/379


380 T V Fityo et al

Difficulties of obtaining exact solutions of quantum problems lead to the development of
perturbation techniques [5, 13–15] and numerical calculus [15] in the presence of deformation.
In our recent work [10], we derived the exact expression for the spectrum of 1D Coulomb
potential and we also obtained the same result with the help of the Bohr–Sommerfeld
quantization rule. The use of the rule was intuitional; in this paper we derive this rule
rigidly and analyse its applicability.

The present paper is organized as follows. In the second section, WKB approximation is
extended for deformed commutation relation, Bohr–Sommerfeld quantization rule is obtained
and its applicability is discussed. In the third section, several 1D examples are analysed and
obtained spectra are compared to the exact results. In the fourth section, we show that the
quantization rule can be applied to 3D problems with radial symmetry. The paper ends with
concluding remarks.

2. WKB approximation

The 1D Schrödinger equation in deformed space reads[
P 2

2m
+ U(X)

]
ψ = Eψ, (2)

where the first term in the brackets describes kinetic energy of the system and the second term
describes the potential. In the deformed space, coordinate and momentum operators satisfy
the following commutation relation:

[X,P ] = ih̄f (P ), (3)

where f (P ) is an arbitrary function of P, in general f (P ) �= 1. We require that f (P ) to
be an even function. This provides invariance of relation (3) with respect to the reflection
X → −X,P → −P . Here we consider general form of deformation, particular form of
deformation (1) will be analysed in more details at the end of the section.

In order to study the semiclassical approximation, we use the so-called quasi-coordinate
representation

X = x, P = P(p), p = −ih̄
d

dx
. (4)

From definitions (3) and (4), we obtain

dP(p)

dp
= f (P ) (5)

and P(p) is an odd function.
Let us express wavefunction in the following form:

ψ(x) = exp
[ i

h̄
S(x)

]
(6)

then in linear approximation over h̄

P 2ψ(x) =
[
P 2(S ′(x)) − ih̄

2
[P 2(S ′(x))]′′S ′′(x) + · · ·

]
ψ(x), (7)

here prime denotes derivative with respect to the argument of the function. Expanding S(x)

in power series over h̄

S(x) = S0(x) +
h̄

i
S1(x) + · · · (8)

we obtain the following set of equations for S:
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P 2(S ′
0(x))

2m
+ U(x) = E, (9)

[P 2(S ′
0(x))]′

2m

h̄

i
S ′

1(x) − ih̄

4m
[P 2(S ′

0(x))]′′S ′′
0 (x) = 0. (10)

Solutions of these equations read

S0(x) =
∫ x

p(±
√

2m(E − U(x))) dx = ±
∫ x

p(P ) dx, (11)

S1(x) = −1

2
ln|[P 2(S ′

0(x))]′| = −1

2
ln|2P(x)f (P )|, (12)

where P = √
2m(E − U(x)) is a function of x, p(P ) is an inverse function to P(p); it is

taken into account that p(P ) is also the odd function. Here we omit constants of integration
since they are taken into account in the final expression for the wavefunction:

ψ(x) = 1√|Pf (P )|
(

C1 exp

[
i

h̄

∫ x

p dx

]
+ C2 exp

[
− i

h̄

∫ x

p dx

])
. (13)

To obtain an expression of the Bohr–Sommerfeld quantization rule, we have to analyse
the behaviour of wavefunction (13) at the infinities and consider matching conditions near
the turning points. For bound states this analysis leads to the following Bohr–Sommerfeld
quantization condition:∫ x2

x1

p dx = πh̄(n + δ), n = 0, 1, 2, . . . (14)

where x1 and x2 are turning points satisfying equation U(x) = E, δ depends on boundary
conditions and properties of P(x). If potential U(x) is a smooth function and if f (0) �= 0
then δ = 1/2.

Note that new small operators x and p satisfy canonical commutation relation; therefore
condition (14) is expected and was used in our previous work [10] as an evident one.
In that paper the following recipe to find a spectrum with the help of Bohr–Sommerfeld
quantization rule was applied: we rewrite the problem in the small operators x and p which
satisfy [x, p] = ih̄, then from equation H(x, p) = E we find out p = p(x,E) and the use
Bohr–Sommerfeld quantization rule (14).

The quantization rule (14) can be rewritten in more convenient form using the following
transformations:∮

p dx = −
∮

x dp = −
∮

x dP
dp

dP
. (15)

Then taking into account expressions (4) and (5), we obtain equivalent form of the Bohr–
Sommerfeld quantization rule

−
∮

X dP

f (P )
= 2πh̄(n + δ). (16)

This rule does not demand knowing of representation of initial operators X and P in terms of
canonical operators x and p and can be applied to an eigenvalue problem at once.

The WKB approximation is valid if the second term of expansion (7) is much less than
the first term. Namely, it is valid if

P 2 � h̄

2
|[P 2(S ′(x))]′′S ′′(x)| ≈ h̄

2

∣∣∣∣d2P 2

dp2

dp

dx

∣∣∣∣ , (17)
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here we substitute S ′(x) with p = S ′
0(x). This substitution is correct in linear approximation

over h̄. Then, using the fact that d2P 2

dp2 = d
dp

(2Pf (P )), we obtain

P 2 � h̄

∣∣∣∣ d

dx
Pf (P )

∣∣∣∣ . (18)

In the undeformed case, it is considered that the WKB approximation is valid for large
quantum number n. In the case of deformation, condition (18) can be violated for large values
of quantum numbers. We analyse this violation in more details for special case of deformation

f (P ) = (1 + βP 2). (19)

This case corresponds to

P(p) = 1√
β

tan
√

βp, p(P ) = 1√
β

arctan
√

βP. (20)

Such a deformation (19), (20) for smooth potential energy U(x) gives δ = 1/2.
Condition (18) reads

P 2 � h̄(1 + 3βP 2)

∣∣∣∣dP

dx

∣∣∣∣ . (21)

For small momentum (βP 2 	 1), we obtain usual condition for validity of the WKB
approximation [17]:

h̄

∣∣∣∣d(1/P )

dx

∣∣∣∣ 	 1. (22)

For large P, we obtain that the following inequality must hold:

3h̄β

∣∣∣∣dP

dx

∣∣∣∣ 	 1. (23)

Let us use rough approximation∣∣∣∣dP

dx

∣∣∣∣ ≈ P

a
= 2πh̄

λa
, (24)

where a is a characteristic size of the system being about x2 − x1, λ is a wavelength
corresponding to momentum P. It allows with the use of formulae (22), (23) to estimate
ranges in which WKB approximation is valid:

a � λ � �X2

a
, (25)

where �X = h̄
√

β is a minimal resolution length. It is interesting to note that if a ≈ �X then
WKB approximation is not valid for any momentum value. This result is not an unexpected
one because a characteristic size of the system must be larger than minimal resolution length,
otherwise all mathematics and physics become meaningless.

3. 1D examples

3.1. Harmonic oscillator

The Hamiltonian of the system is

H = P 2 + X2, (26)

here and below we put m = 1/2, ω = 2 and h̄ = 1 for the sake of simplicity.
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From H(P,X) = E, we obtain

X =
√

E − P 2 (27)

and Bohr–Sommerfeld quantization condition (16) gives

2
∫ √

E

−√
E

√
E − P 2

1 + βP 2
dP = 2π

β
(
√

1 + βE − 1) = 2π(n + 1/2). (28)

From the last equation we obtain

En = (2n + 1) + β
(
n2 + n + 1

4

)
. (29)

The exact result obtained by Kempf and collaborators [4] is

En = (2n + 1)

(
β

2
+

√
1 +

β2

4

)
+ βn2 ≈ (2n + 1) + β

(
n2 + n +

1

2

)
+ O(β2). (30)

As one can see, results presented by formulae (29) and (30) asymptotically coincide for
large n.

The inequality (25) for harmonic oscillator reads
√

n � 1√
n

� β√
n
. (31)

So if β 	 1, it simplifies to usual condition of WKB approximation applicability

n � 1.

3.2. Anharmonic oscillator

The Hamiltonian reads

H = P 2 + γ NXN, (32)

where N is an even integer.
Then from H(P,X) = E, we obtain

X = 1

γ
(E − P 2)1/N (33)

and

2
∫ √

E

−√
E

X dP

1 + βP 2
= 2π(n + 1/2). (34)

We calculate the last integral in linear approximation over β and obtain that

En = E0
n

(
1 +

2β

(1 + 2/N)(3 + 2/N)
E0

n

)
, (35)

where E0
n denotes energy levels obtained using Bohr–Sommerfeld quantization rule for β = 0

and they read

E0
n =

[
π

	(3/2 + 1/N)

	(1/2)	(1 + 1/N)
γ (n + 1/2)

] 2N
2+N

. (36)

If N = 2 and γ = 1, we reproduce result (29) obtained for 1D harmonic oscillator.
In limit N → ∞, we obtain system which is equivalent to infinitely high potential well.

For this case (35) gives

En =
(

πγ
(
n + 1

2

)
2

)2

+
2

3
β

(
πγ

(
n + 1

2

)
2

)4

, (37)
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where 2/γ stands for the well width. Previously the problem has been considered in [7] for
general form of deformation function f (P ) and in linear approximation over β their approach
for f (P ) = 1 + βP 2 gives

En =
(πnγ

2

)2
+

2

3
β

(πnγ

2

)4
. (38)

The difference between formulae (37) and (38) appears due to the limiting procedure (δ = 1/2
for finite N, δ = 0 for N = ∞). Direct consideration of potential well in WKB approximation
gives the same result as in (38).

Expression (25) gives the following condition:

1 	 n 	 1

γ 2β

of WKB approximation applicability for infinitely high potential well (N → ∞). One can
see that the approximation is not valid for small n (as in undeformed case), but it becomes
invalid for very large n.

3.3. −1/X2 potential

Let us consider the following Hamiltonian:

H = P 2 − γ

X2
, γ > 0. (39)

Only for negative energies there exist bound states. From equation H(X,P ) = E, we find

X =
√

γ√
P 2 − E

. (40)

Then rule (16) can be rewritten as

4
∫ ∞

0

√
γ dP√

P 2 − E(1 + βP 2)
=

√
γ√

1 + Eβ
ln

(
2 + 2

√
1 + Eβ + Eβ

2 − 2
√

1 + Eβ + Eβ

)
= 2π(n + δ), (41)

where δ depends on boundary conditions. Equation (41) can be solved for small β and it gives

En = − 4

β
e−π(n+δ)/

√
γ . (42)

For β → 0 one can see that En → −∞. It corresponds to the fact that for undeformed case,
there does not exist any bound state for this potential. So, deformation of the space leads to the
existence of bound states for −1/X2 potential. For a singular potential V (X), we can estimate
P ≈ √

2m|V (X)| at the vicinity of the singularity point. It is easy to show that inequality (18)
does not hold for potentials −1/X2 and −1/X either in deformed or in undeformed spaces at
the vicinity of the origin. So, formally the WKB approximation cannot be applied to −1/X2

potential. On the other hand, the Bohr–Sommerfeld quantization rule gives exact result for
−1/X potential in deformed space [10]. In the undeformed case, the WKB approximation
also can be applied to singular potentials (see for an instance [16]). Thus, we may expect that
obtained spectrum (42) is quite accurate too.

4. 3D examples

In the second section, we prove the Bohr–Sommerfeld quantization rule (14), (16) for 1D case,
then in the next section we illustrated the rule with the examples. The examples presented
in this section demonstrate that we can use Bohr–Sommerfeld rule in 3D space and obtain
satisfactory results.
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Deformed commutation relation usually is generalized to the following form in the 3D
case [13]:

[Xi, Pj ] = i(1 + βP 2)δij + iβ ′PiPj . (43)

There exists a simple momentum representation for coordinate and momentum operators

Xi = (1 + βp2)xi + β ′pi

3∑
j=1

pjxj , Pi = pi. (44)

In a semiclassical approach, coordinate and momentum operators are substituted with
corresponding variables and

X2 = [1 + (β + β ′)p2]2x2
p + (1 + βp2)2 L2

p2
, (45)

here we use spherical system of coordinates (p, θ, φ); xp = (�x·�p)

p
denotes ‘radial part’ of

coordinate, L2 is an angular part. The 3D problem in semiclassical approach can be reduced
to a 1D one if one substitutes L2 with (l + 1/2)2 [17].

4.1. Hydrogen atom

The classical Hamiltonian reads

H(p, x) = P 2 − γ

X
= p2 − γ√

[1 + (β + β ′)p2]2x2
p + (1 + βp2)2

(
l+1/2

p

)2
. (46)

The energy values of bound states of hydrogen atom are negative. Then from the
equation H(p, x) = E, we obtain

xp = 1

1 + (β + β ′)p2

√
γ 2

(p2 − E)2
− (1 + βp2)2

(
l + 1/2

p

)2

(47)

and Bohr–Sommerfeld quantization condition reads

2
∫ pmax

pmin

xp dp = 2π

(
n +

1

2

)
. (48)

The integral (48) is very cumbersome, so we expand it in powers of β and β ′. In linear
approximation, it reads∫ pmax

pmin

xp dp ≈
∫ pmax

pmin

√
. . . dp − (β + β ′)

∫ pmax

pmin

√
. . . p2 dp − β

(
l +

1

2

)2 ∫ pmax

pmin

dp√
. . .

,

(49)

where

√
. . . =

√
γ 2

(p2 − E)2
−

(
l + 1/2

p

)2

.

The integration of (49) gives

−π

(
l +

1

2

)
+

γπ

2
√−E

− π(β + β ′)γ

(
γ

4(l + 1/2)
−

√−E

2

)
− πβ

γ 2

4

1

l + 1/2
. (50)

Then solution of equation (48) in linear approximation gives

En,l ≈ − γ 2

4n2
+

γ 4

8n3

(
β

[
2

l + 1/2
− 1

n

]
+ β ′

[
1

l + 1/2
− 1

n

])
. (51)
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We compare this result with expression for the correction obtained by Benczik and
collaborators [15] with the help of perturbative theory. Their expression contains one additional
term

γ 4

16n3

2β − β ′

l(l + 1)(l + 1/2)
.

For large l, the term is small in comparison with the rest terms. So, for 3D hydrogen atom
Bohr–Sommerfeld quantization rule provides satisfactory accuracy.

4.2. Harmonic oscillator

The Hamiltonian of the system is

H = P 2 + X2 = p2 + [1 + (β + β ′)p2]2x2
p + (1 + βp2)2 (l + 1/2)2

p2
. (52)

From equation H(p, x) = E, we obtain

xp = 1

1 + (β + β ′)p2

√
E − p2 − (1 + βp2)2

(
l + 1/2

p

)2

. (53)

Corresponding contour integral can be calculated exactly but it is very cumbersome. On the
other hand, as we see Bohr–Sommerfeld quantization rule gives correct result only in linear
approximation over β, β ′. Therefore, we calculate it in the linear approximation
π

2
E − π

2
(β − β ′)(l + 1/2)2 − π(l + 1/2) − π

8
(β + β ′)E2 = 2π(np + 1/2), (54)

from which we obtain

En = 2n + 3 + (β + β ′)(n + 3/2)2 + (β − β ′)(l + 1/2)2, (55)

where n = 2np + l. The spectrum of 3D harmonic oscillator was calculated exactly in [8].
The difference of their exact expression and our approximate one is

2β − β ′

2
. (56)

For large n and l, we see the method is again good.

5. Concluding remarks

In this paper, we derived the Bohr–Sommerfeld quantization rule and considered its
applicability to the 1D case. A new interesting feature appearing in the presence of deformation
is that WKB approximation becomes valid for intermediate quantum numbers, but it can
become invalid for small (as in the undeformed case) as well as for very large quantum
numbers. This feature is illustrated with example 3.2, an infinitely high potential well.

To verify the method, we compared results obtained with the help of the Bohr–Sommerfeld
quantization rule with exact spectra expressions for the harmonic oscillator and the infinitely
high potential well (examples 3.1, 3.2) and showed that the results obtained are asymptotically
exact for large n. The consideration of −1/X2 potential indicates that there may exist bound
states for this potential in deformed space, although for the undeformed case bound states do
not exist (example 3.3). It was shown that the method could be applied to 3D problems with
radial symmetry with satisfactory accuracy (see examples 4.1, 4.2).

As a result it seems that the Bohr–Sommerfeld quantization rule can be applied to
consideration of a wide variety 1D problems as well as to 3D problems in deformed space.
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